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Abstract—A simple procedure for the evaluation of magnetic
field in the vicinity of substations is presented and discussed.
The approach is based on the concept that all power installations
can be decomposed into conductor loops and characterized by
their magnetic dipole moment. A practical example for worst-case
values of the magnetic stray flux is enclosed, where the effective-
ness of the method is verified with practical measurements at a
substation in well defined operation.

I. INTRODUCTION

Electric power substations are often situated in industrial or

residential areas where electrical installations are located close

to working or living sites. According to national regulations

the compliance with exposure limit values for the magnetic

flux density have to be verified (in the Swiss ordinance

relating to protection from non-ionising radiation [1] e.g. the

precautionary limitation of emissions is 1 µT for sensitive used

sites).

Electric power stations represent an accumulation of various

electric devices, bus conductors and cable sections. A detailed

computer model of the active installation requires the input

of a large number of geometric data. As a consequence the

sources of errors are numerous and careful model verification

is necessary.

Since the magnetic field analysis of a power installation

aims to check the compliance with emission limitations, a

worst-case evaluation of the flux density at a defined location

is adequate for this task. Frequently a determination of a

maximum distance for the magnetic flux density to fall below

a specified limit is of interest.

The present publication demonstrates the application of

approximation formula for an evaluation of maximum flux

density values in function of the distance. In all equations

the rms values of a sinusoidal current I and correspondingly

the rms magnitudes of the magnetic flux densities B [T] or

[Vs/m2] are being used if not stated otherwise:

B = ‖Brms‖ =

√

√

√

√

3
∑

i=1

[Re(Bi)]2 + [Im(Bi)]2 (1)

Arguments are the basic geometric parameters and the maxi-

mum values of current flowing in the phase conductors. It can

be shown, that the simple approach does not lead to severe

increase of uncertainty nor to a significant expansion of safety

margins.

II. MAGNETIC DIPOLES OF CONDUCTOR LOOPS FOR

MAGNETIC FLUX DENSITY EVALUATION

In the presented concept all installations are decomposed

into conductor loops. The loops represent a magnetic dipole

with the moment (2). For a complanate loop, the dipole

moment reduces to the scalar expression (3).

m = I

∫

A

ν d vol (2)

m = AI ν (3)

A: Surface bounded by the loop

ν: Unit normal vector on the surface A
I: Loop current

In the far field the magnitude of magnetic flux density B
decreases with the inverse 3rd power of the distance r. In the

direction of the dipole vector the magnetic flux density B =
B⊥

rms(r) is twice as high as in the direction parallel to the plane

of the loop B = B
||
rms(r):

B⊥
rms =

µ0m

2π

1

r3
(4a)

B||
rms =

µ0m

4π

1

r3
(4b)

where m = ‖m‖. Obviously, for worst case considerations,

relation (4a) can be applied in all directions. If a loop is

not plane, the projection of its areas in three orthogonal

space directions have to be considered separately and the

total magnetic moment results from the vector sum of the

three moments. (Fig. 1). An analytical proof is given in the

appendix.

A. Three-phase lines and lower order magnetic moments

Line sections can be considered as long narrow loops. For

two-phase lines of infinite length, the rms value of the flux

density decays uniformly in all directions perpendicular to

the line axis [2] (Fig. 2(a) and eq. (5)). For three-phase lines
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Figure 1. Projection of a non-complanate loop on three orthogonal planes

(a) (b)

Figure 2. Definition of variables for the expression for the dipole magnetic
flux density of (a) a two conductor line (eq. (5)) (b) a three-phase line (eq.
(5) and (6))

with symmetrical currents the phase clearances (Fig. 2(b)) are

composed according to eq. (6)

Brms
∼= µd

2πr2
Irms (5)

d =

√

d2
1 + d2

2 + d2
3

2
(6)

For close distances from the observer to the three-phase

conductors, the magnetic flux density will always be below

the value given by eq. (7), if r is the shortest distances to a

phase conductor.

Brms ≤
µ0Irms

2πr

d√
r2 + d2

(7)

B. Three-phase line sections

For practical three-phase conductor sections such as bus

bars, feeders and departures, the limited length of the sections

has to be considered. The limitation in length results in a

reduction of the magnetic flux density according to Fig. 3

and eq. (8).

BP rms ≤ 2 sin(α)Bline = Bline

l
√

r2 + (l/2)2
(8)

Figure 3. Explaining sketch for equation (8)

Finally, the magnetic flux density distribution of a three-phase

section is limited by the general expression (9). For r, in a

worst-case field evaluation again the shortest distance from

the location of flux density evaluation to a conductor of the

three-phase system must be chosen.

Brms ≤
µ0Irms

2πr

d√
r2 + d2

l
√

r2 + (l/2)2
(9)

d: Combined phase distance according eq. (6)

l: Length of the considered three-phase section [m]

Expression (9) consists of the following three terms:

1) The Brms field of an infinitely long conductor

2) The sine of the angle at the point of observation sub-

tended by the distance d
3) Twice the sine of the angle at the point of observation

subtended by half of the length of the three-phase section

l/2 (fig. 3)

III. DETERMINATION OF THE DISTANCE FROM A

THREE-PHASE LINE SECTION TO KEEP TO A DEFINED

MAGNETIC FLUX DENSITY LIMIT

Unfortunately eq. (9) can not be solved explicitly for the

distance r to evaluate the distance for a given value of

Brms. This disadvantage is overcome by an approximation

of (9) by power functions in three sections (linear, square,

cubic) (Fig. 4). The three approximating power functions (10)

can be solved to rc, being the necessary distance from the

nearest conductor of the three-phase section to keep within

the emission limit Bc.

rc1 =
µ0I

2πBc
, rc2 =

(

µ0Id

2πBc

)1/2

, rc3 =

(

µ0Idl

2πBc

)1/3

(10)

The flux density remains within the limit Bc for rc being

the minimum value of rc1, rc2 and rc3. For Bc = 1 µT the

condition is expressed in eq. (11).

rc[m] = min{0.2 · I[A], (0.2 · I[A] · d[m])1/2,

(0.2 · I[A] · d[m] · l[m])1/3}
(11)

IV. MODELLING OF SUBSTATION PARTS

A. Three-phase leads

The magnetic flux density of all three-phase lead or connec-

tion in an electric installation: bus-bar feeder etc. is modelled

by one or several three-phase sections according to (9). It is

important to point out, that every loop is necessarily closed

at the interface to the neighbouring loop (Fig. 5(a) and Fig.

5(b)). Since the neighbour loop is closed as well, the closing

currents cancel each other. A missing closing conductor would

produce a second order decaying B-field magnitude, which

would distort the far field dramatically.

In order to superimpose the magnetic flux densities of all

different three-phase sections of an installation, the Brms field

of the sections may simply be summed up linearly. In the
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Figure 4. Decay of the magnetic flux density of a model conductor section
according to Fig. 3 in the direction of point „P”. The light blue curve shows
the precise calculation. The violet trace marked by squares is the result of eq.
(9). The traces of the functions (10) represent lines with different slope in the
semi-logarithmic plot

(a) (b)

Figure 5. (a) Division of a three-phase conductor system into two sections
(b) Sketch of a small medium voltage switchgear. A proposal for a definition
of three-phase sections (loops) is given representing the worst-case operating
condition

sense of a worst-case evaluation the fact is disregarded, that

the directions of the magnetic moments may not be aligned.

The replacement of the proper vectorial summation by a scalar

summation of the rms-values increases the calculated value

and thus introduces a further safety margin into the evaluation.

An important question is the determination of the nominal

decisive operation state. For worst-case studies this is the most

adverse operating condition. On HV level the current may be

higher than the sum of the transformer input currents because

of possible additional transit currents passing through the

substation. In the medium voltage level, where transit currents

normally do not exist, the maximum current is given by the

nominal power of the transformers. In the medium voltage

switchgear, the most adverse current distribution results if

the current concentrates to the departing lines with largest

distances to the transformer feeder. (Fig. 5(b)). Sections of

the bus bar with differing currents are treated separately.

B. Transformers

According to theoretical consideration and practical mea-

surements the magnetic flux density B of transformers and of

Figure 6. Result of a magnetic stray flux evaluation in a substation. The sum
of maximum possible magnetic dipole moments for HV and MV switchgear
and the transformers have been evaluated. The radius for the flux density to
meet the emission limit of 1 µT is plotted around the active installations

other devices decrease with the third power of the distance.

Practical experience suggests, that the magnetic dipole mo-

ment m and thus the stray flux density B is well related to the

transformer nominal apparent power. Although proportionality

to the square-root of the apparent power and to the relative

short circuit voltage are proposed by some authors [3], our

own measuring results in a wide power range demonstrated

suitable worst-case values using the simple approach:

Brms(r) = kTr

PN

r3
(12)

PN : Nominal power of the transformer [kVA]
r: Distance from the centre of transformer [m]
kTr: Field coefficient [ms/A], [Tm3

/VA]

An established value for kTr is 0.04 Tm3
/kVA. With this expres-

sion the leads to the transformer-bushings are excluded and

have to be calculated separately. The magnetic flux density of

power devices can only be dominant, if they are placed at the

outside edge of the installations. In distant positions of devices

magnetic flux densities of lines and leads are dominant. With a

20 MVA transformer a reduction of the magnetic flux density

to 1 µT is reached at a distance of 9 m from the transformer

centre.

V. EXAMPLE OF THE MAGNETIC FLUX DENSITY

EVALUATION OF A SUBSTATION

An example for a theoretical evaluation of the worst case

distance to reach a magnetic flux density below 1 µT for the

installation is presented in Fig. 6 to 8. The investigated power

substation was divided into the following main parts: 1) HV

switchgear, 2) medium voltage switchgear, 3) transformers.

The parts of the power substation were considered as

separate magnetic field sources. With the general approxima-

tion formula (9) the distances to meet the emission limits

were determined in the most adverse operational situation

at nominal current values. For the MV and HV switchgear

1), 2) and the transformer with connections 3), the effective
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Figure 7. MV switchgear (left) and transformer (right), measuring profiles
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Figure 8. Theoretically evaluated and measured magnetic flux decay

geometric dimensions of the conductor arrangement have been

used. For the reporting contour lines with the determined

distances, measured from the current carrying conductors were

plotted (Fig. 6) and compared with the measured results (Fig.

8).

VI. CONCLUSION

A quick method for the worst-case evaluation of magnetic

field of power substations has been introduced and the applica-

tion for practical cases is demonstrated. The procedure bases

on the concept, that all installations can be decomposed into

conductor loops which can be characterized by their magnetic

dipole moments rendering simple expressions for the magnetic

flux density values Brms. For worst-case evaluation a scalar

summation is proposed to obtain maximum values for the

magnetic flux density in the vicinity of the installation or the

distances to keep to emission limits. HV and MV switchgear

and the transformer installation have been evaluated separately

and the results have been superimposed. The theoretical results

have been verified by practical measurements at operating

substations.
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APPENDIX

PROOF: THE MAGNETIC DIPOLE MOMENT OF A

NON-COMPLANATE LOOP IS THE VECTORIAL SUM OF THE

MOMENTS OF THE ORTHOGONAL PROJECTIONS OF THIS

LOOP

The magnetic moment of a closed loop is given by

m =
I

2

∫

γ=∂M

γ × dγ = I

∫

M

ν d vol , (13)

where M is a two-dimensional compact manifold M ⊂ R
3

with boundary ∂M , corresponding atlas and partition of unity

{(U (j), φ(j), ρ(j))}, j = 1, . . . , N and ν is the unit normal

vector on M . M is locally the graph of some functions ϕ(j) :
V (j) → R, i.e. the φ

(j) : U (j) → V (j) ⊂ R
2 are projections

onto either the x-y-plane (type (z)), the x-z-plane (type (y))
or the y-z-plane (type (x)).

In a chart (U (z), φ(z)) of type (z), we have

(φ(j))−1(x, y) =





x
y

ϕ(j)(x, y)





and

dσ(z) =
∂(φ(z))−1

∂x
× ∂(φ(z))−1

∂y
dxdy

=







−∂ϕ(z)

∂x

−∂ϕ(z)

∂y

1






dxdy

(14)

up to a sign for the orientation. The z-component of

σ(z) =

∫

U(z)

νd vol =

∫

V (z)

dσ(z)

thus is the area of V (z).

Consider now the contribution to the z-component of

σ := m/I from a overlapping part U (x) ∩ U (z) of a chart

(U (x), φ(x)) of type (x), overlapping with U (z). It is again

the area of the projection of the overlapping onto the x-y-

plane, because the integrals of ν over U (x) ∩ U (z) in both

charts have to agree.

Integrating over whole M using the partition of unity yields

that the components of σ are the areas of the projections of M
onto the corresponding coordinate planes. Charts with opposite

orientations cancel each other.

As a summary of the above, the following relation can be

given

area[πe(M)] = σ · e, (15)

where πe(M) is the projection of M onto the plane perpen-

dicular to the unit vector e through the origin. An immediate

consequence is the fact, that the area of the projection of M
is maximal if the projection is along σ.
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