Abnahme- und Diagnoseprüfungen von GIS vor Ort Essenzen und Trends

Dr. Stefan Neuhold

FKH
Fachkommission für Hochspannungsfragen
Zürich, Schweiz

ETG-Fachtagung: Trends bei HS-Schaltanlagen Baden, 25.09.2013

Schaltprogramm

- IEC ⇔ Praxis
- TE-Fehler ⇔ Betriebs-Gefährdung
- TE-Messempfindlichkeit Messmethode / Fehlertyp
- Schnittstellen GIS Integrale Prüfung
- Altanlagen Diagnose / Test

Zuverlässigkeit GIS

Forderung IEC [1]: < 0.1 Fehler / 100 Feld-Jahre

Praxis: CIGRE Umfragen [2]

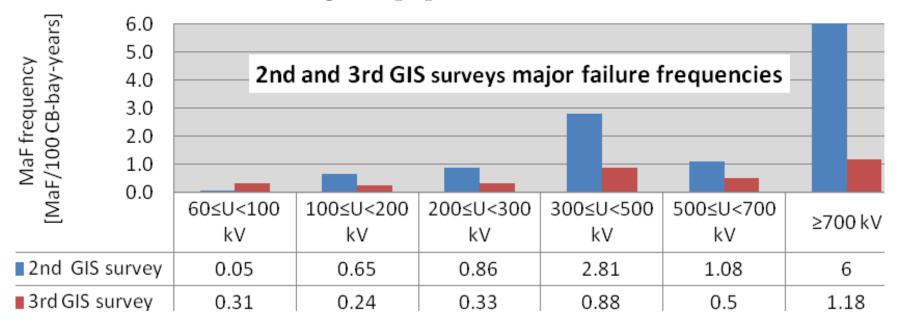
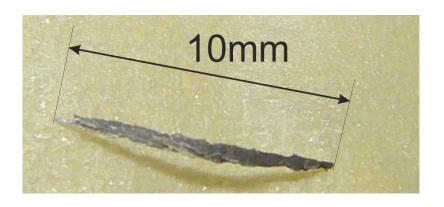


Figure 1- 9 GIS major failure frequencies for voltage classes

MaF (Major Failure): «Failing to perform requested operation or function» (63%) and «Dielectric breakdown» (23%)

^[1] IEC-Publication 60071-2; Insulation coordination; Part 2; Application Guide, Third edition 1996-12

^[2] Final Report of the 2004 – 2007 International Enquiry on Reliability of High Voltage Equipment; Part 1; page 42; CIGRE October 2012


Fehler => Ausfall im Betrieb

50% der gravierenden Fehler im Betrieb im dielektrischen Bereich wurden vor der Inbetriebnahme verursacht [3].

125 kV Spannungswandler GIS Sicht durch Berstscheibenöffnung

=> Erhöhte TE bei Fabrik-Abnahme Durchschlag nach 19 Jahren

ALU-Partikel 10mm lang
U_{ex} <35 kV, U_{Betrieb Ph-E} 76 kV
Ort: Leistungsschalter 123 kV GIS
(SS-Kupplung Altanlage)

=> So ausgeliefert (Fabrik)
Detektiert & entfernt während Nachprüfung

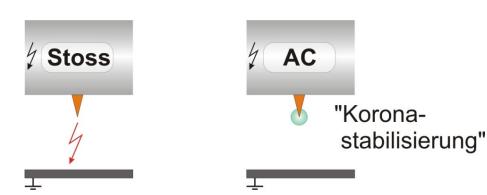
[3] Final Report of the 2004 – 2007 International Enquiry on Reliability of High Voltage Equipment; Part 1; page 44; CIGRE October 2012

Erkenntnisse aus den CIGRE Umfragen

- Die meisten Überschläge in der Anfangsphase des GIS Betriebes hätten durch effektive dielektrische Prüfungen in der Fabrik und vor Ort vermieden werden können [4]
- Vor-Ort-Prüfung: TE-Messung bei hoher Spannung [5]:

		CIGRE						
	W	erk	vor Ort		TE-Messspannung			
U _r	U_p	U_d	U_{ds}	$U_{pd\text{-test}} \qquad U_{pd\text{-test}}$		$U_{pd ext{-test}}$		
	BIL	1 min	1 min	starr	nicht starr	alle		
72.5	325	140	120	50 87		94		
123	550	230	200	85 148		158		
145	650	275	235	98	170	187		
170	750	325	270	118	204	216		
245	1050	460	380	170	294	302		
420	1425	650	515	290	(504)	416		

Prüfpegel für GIS (rot: Von der FKH empfohlene TE-Messspannung vor Ort)


[4] Final Report of the 2004 – 2007 International Enquiry on Reliability of High Voltage Equipment; Part 1; page 42 - 45; CIGRE October 2012

[5] CIGRE Joint Working Group 33/23.12; Insulation co-ordination of GIS; return of experience on site and diagnostic techniques; Electra No 176; February 1998

Prüfmethoden vor Ort: AC / Stoss / TE-Messung

Mit AC-Test: Nicht möglich alle kritischen Defekte zu detektieren (z.B. Spitzen an Elektroden)

AC: Ladungswolke schirmt Spitze ab => Erhöhung der Durchschlagsspannung

Diese Defekte werden durch eine Blitzstoss-Prüfung detektiert.

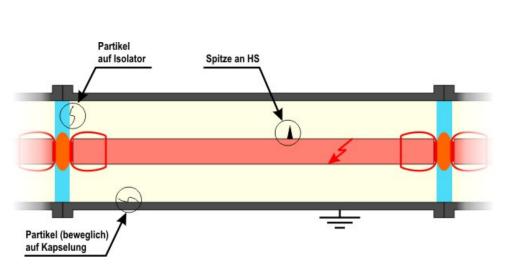
> Soll die Blitzstoss-Prüfung durch eine <u>TE-Messung</u> ersetzt werden so muss diese eine <u>sehr hohe Empfindlichkeit</u> aufweisen.

Heutige Praxis: Stehwechselspannungsprüfung mit begleitender UHF-TE-Messung (vereinzelt auch konventionelle TE-Messung nach IEC).

Effektivität von Vor-Ort-Prüfungen

TABLE 3. Relative effectiveness of on-site tests on GIS defects (\bullet : effective; Δ : less effective).

Defect	High AC	Low AC with PD	High AC with PD	LI	SI
Sharp protrusions fixed on live parts			Δ	•	
Round protrusions fixed on live parts (assembly faults)	Δ		•	•	•
Particles on spacers			Δ	•	Δ
Cracks in spacers	Δ	Δ	•	Δ	Δ
Free particles	•	•	•		Δ
Parts floating	Δ	•	•		
Left foreign bodies	•	Δ	•	•	Δ


ÉLECTRA No. 176 FEBRUARY 1998

CIGRE Joint Working Group 33/23.12; Insulation co-ordination of GIS; return of experience on site and diagnostic techniques; Electra No 176; February 1998

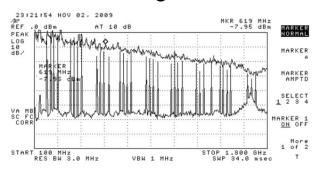
TE-Pegel ⇔ Betriebs-Gefährdung

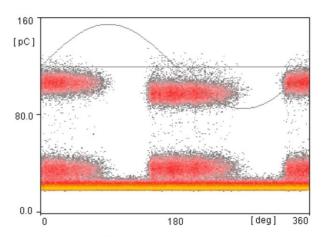
Forderung IEC (62271-203): < **5pC** (< 10 pC für spez. Komp.) Kritische Partikel-Längen gemäss CIGRE [6]:

defect type	critical length
(rounded tips)	app. charge according to IEC 270
free metallic moving particle	2 5 mm for AC testing voltage 2 10 pC for lift-off voltage
protrusion on HV conductor	around 1 mm for LI testing voltage 1 2 pC for 0,8 AC testing voltage
particle on surface of solid insulating material	around 2 mm for LI testing voltage about 0,5 pC for 0,8 AC testing voltage

TABLE

Fazit: Die Betriebsgefährdung eines TE-Defekts hängt vom Fehlertyp und der spezifischen Konstellation ab – NICHT vom TE-Pegel

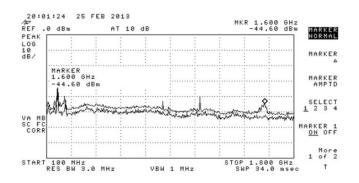

[6] CIGRE Joint Working Group 33/23.12; Insulation co-ordination of GIS; return of experience on site and diagnostic techniques; Electra No 176; February 1998

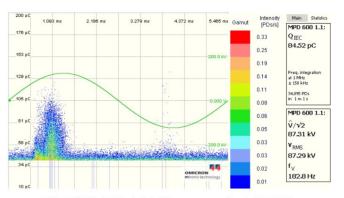


Beispiele aus der Praxis

Floatendes Teil einer Antriebswelle:

- Keine akute Gefährdung
- Sehr starkes Signal
- Verhindert Messung von schwächeren Signalen

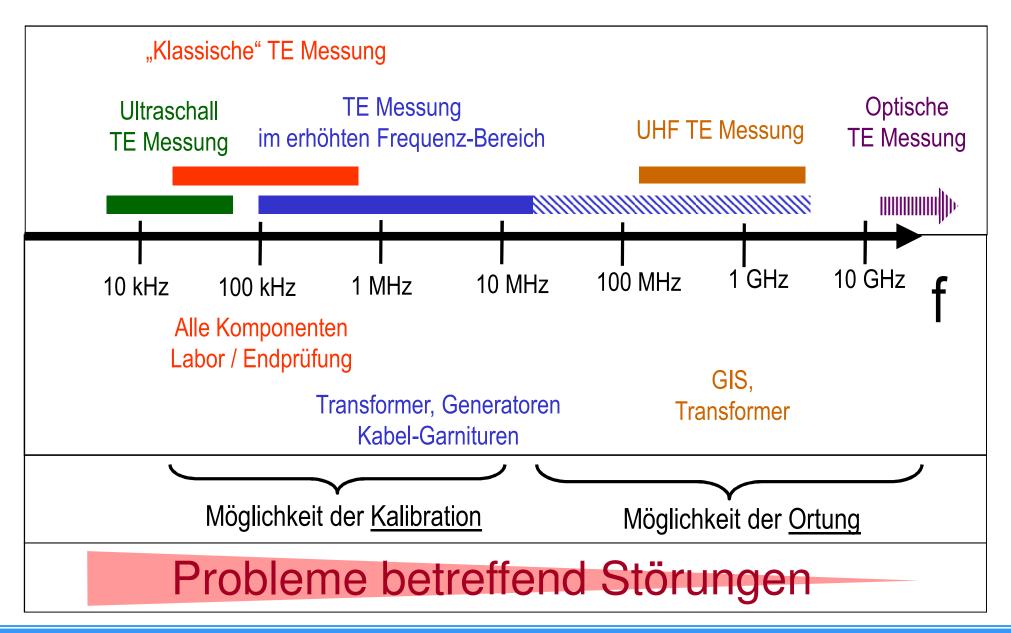




145-kV-GIS: TE-Messung bei 100 kV PRPDA-Auskopplung bei 641 MHz

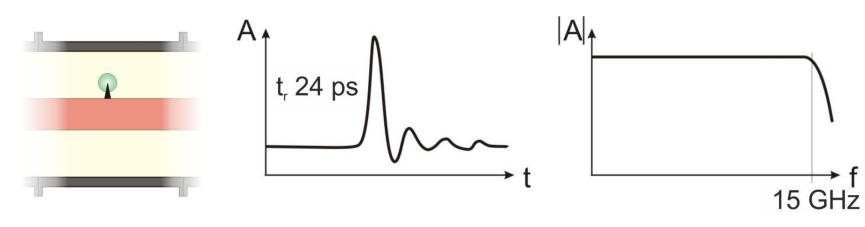
2.5 mm Partikel auf Isolator:

- Akute Gefährdung bei Transienten
- Signal nahe an der Rauschgrenze
- Sehr hohe Messempfindlichkeit notwendig

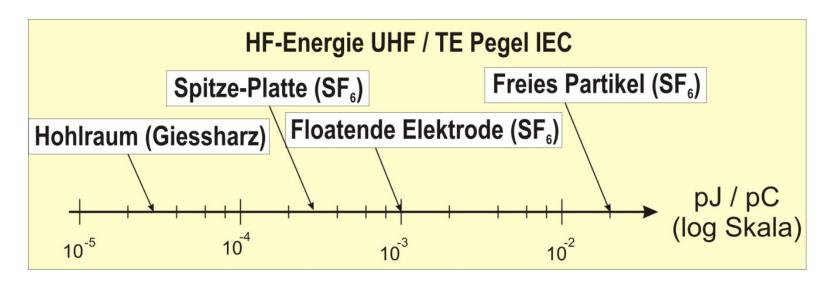


72.5-kV-GIS: TE-Messung bei 87 kV PRPDA-Auskopplung bei 1600 MHz

TE-Messung: Störsignal-Situation

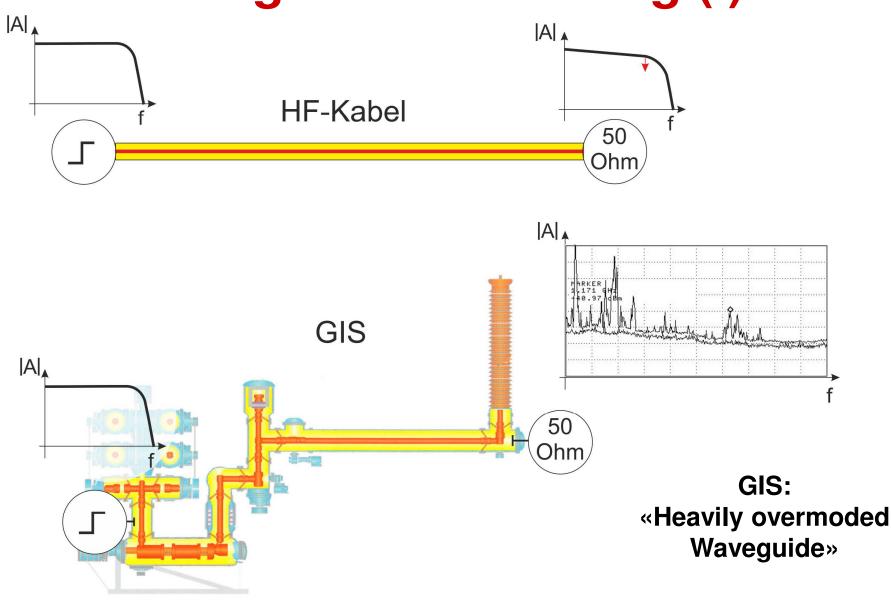


© FKH, 2013, Dr. S. Neuhold

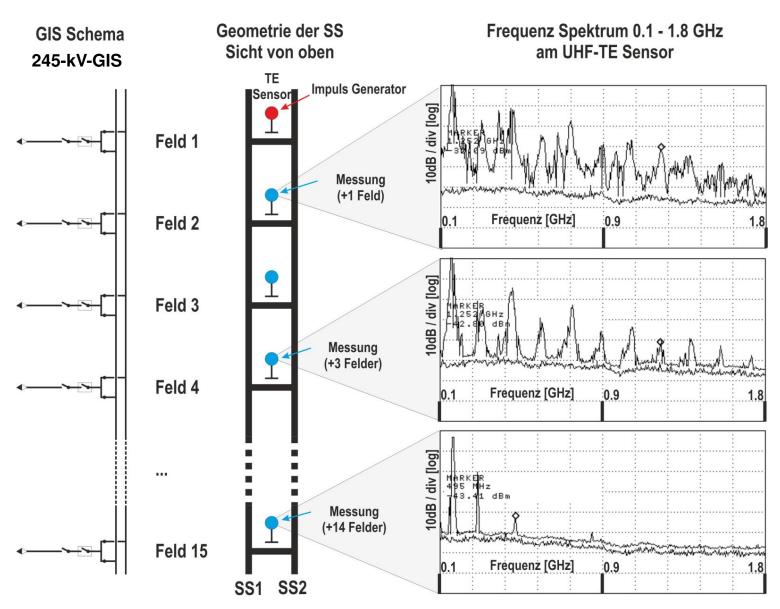

TE-Signal-Eigenschaften in GIS

"Signal-Eigenschaften" Bsp: Spitze An Innenleiter

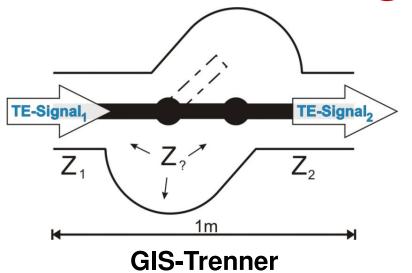
Reid A.J., Judd M.D.; Ultra-wide bandwith measurement of partial discharge current pulses in SF6; Journal of Physics. D: Appl. Phys. 45 (2012)


"Sendeleistung" eines Fehlertyps normiert auf IEC-TE-Pegel [pC]

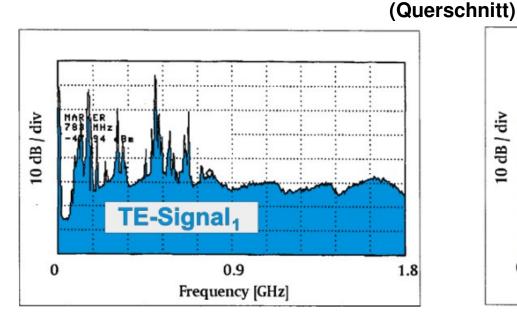
Steward B.G., Judd M.D., Reid A.J., Fourarcre R.A.; Suggestions to Augment the IEC 60270 Partial Discharge Standard in Relation to Radiated Electromagnetic Energy; IEEE 2007

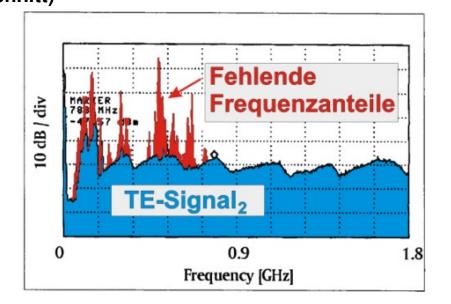

Signal-Ausbreitung (I)

Quelle: ABB; GIS ELK 3; Publication No.: 1HC0000742 E01 / AB01


Signal-Ausbreitung (II)

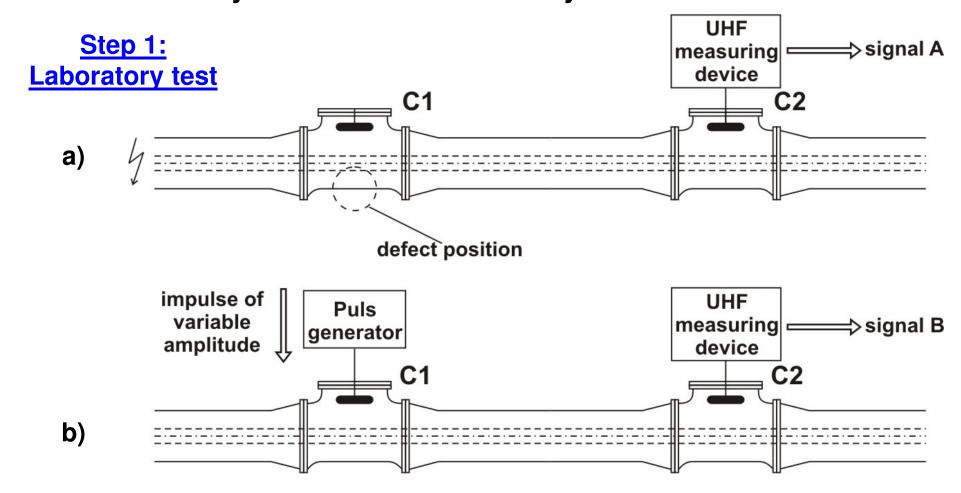
Schwache
Dämpfung
entlang
Sammelschiene


Signal-Ausbreitung (III)


Starker Einfluss der Kapselungs-Geometrie auf das frequenz-abhängige Dämpfungs-Verhalten

Starke Dämpfung entlang eines einzelnen GIS-Bausteins

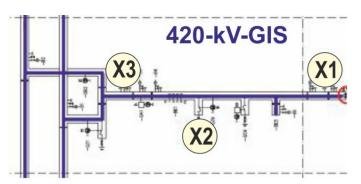
Ähnlicher Effekt bei grossen Durchmesser-Änderungen

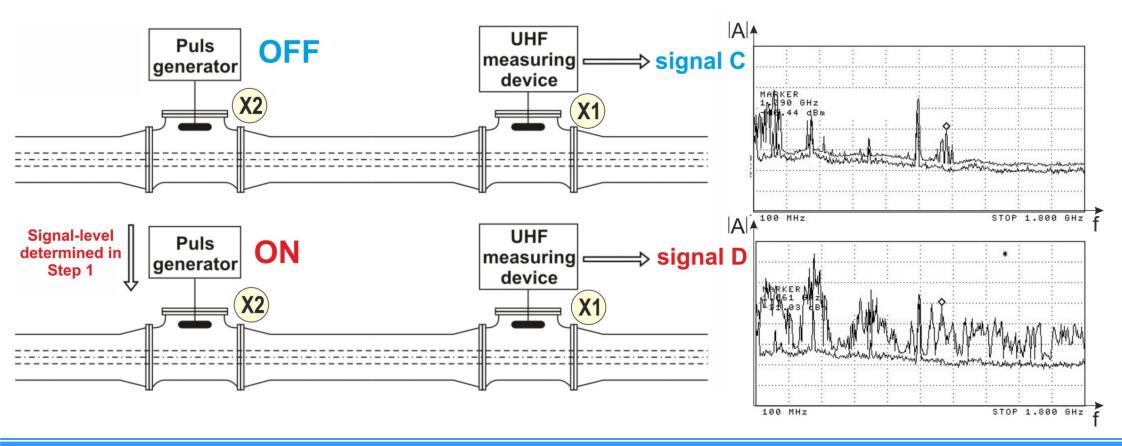


Behrmann G.J., Neuhold S., Pietsch R.; Results of UHF measurements in a 220kV GIS Substation during on-site commissioning tests; 10th ISH Monteral; August 1997

CIGRE sensitivity check* (I)

"PD detection system for GIS: Sensitivity verification for the UHF method ..."


Output: Impulsgenerator-Amplitude & Bericht (Resultate nachvollziehbar, Versuch reproduzierbar)


*CIGRE Task Force 15/33.03.05 recommendation; Electra No 183, April 1999, pp 75-87

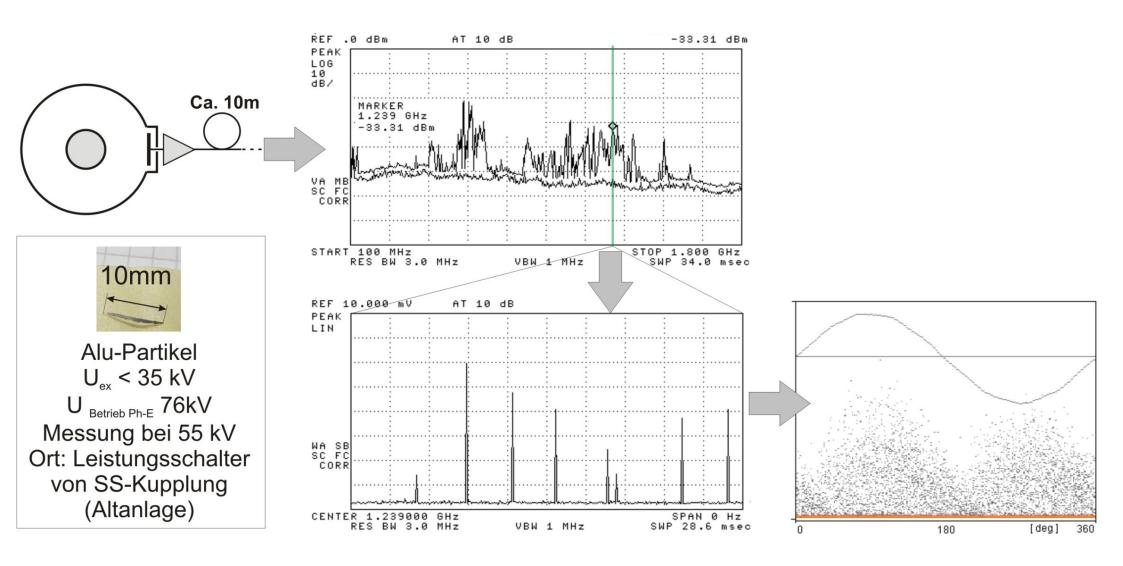
CIGRE sensitivity check* (II)

Step 2: Check on site

CIGRE sensitivity check* (III)

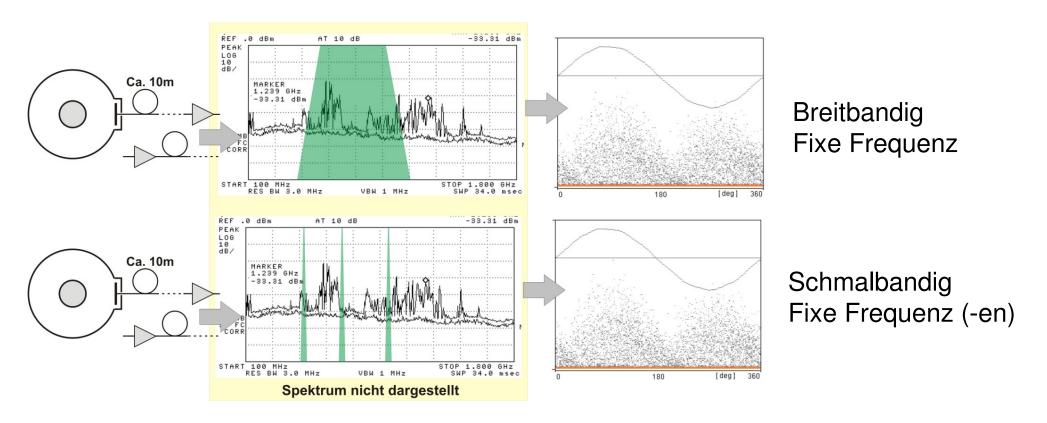
Zu Beachten:

- Die Resultate / Checks sind "Fehlertyp-Abhängig"!
 - Je nach verwendetem Fehlertyp in Step 1:
 - ... wird sich ein anderer Pulsgenerator-Pegel ergeben
 - ... hat es einen Einfluss auf die notwendige Anzahl UHF-Sensoren
- Aufgrund der guten Messbarkeit wird in Step 1 oft ein hüpfendes, metallisches Partikel verwendet
 - Mit einer auf diesen Fehlertyp ausgelegten Sensor-Verteilung verlangt es bereits eine sehr hohe Messempfindlichkeit um noch ein Partikel auf Isolierstoff zu messen (z.B. Schmalband, variabel)


Fazit:

Will man die Blitzstossprüfung vor Ort durch eine TE-Messung ersetzen ist empfohlen:

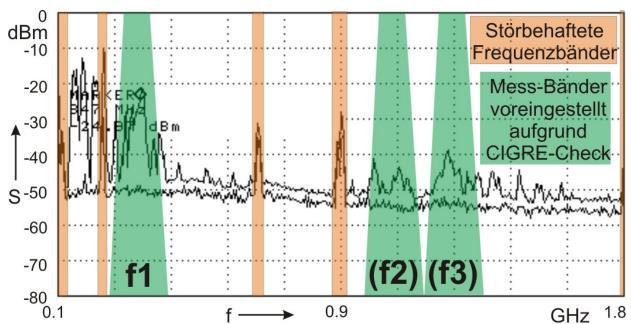
- die Anzahl Sensoren gemäss der heutigen Praxis zumindest NICHT zu verringern
- mit einer möglichst hohen Messempfindlichkeit zu messen

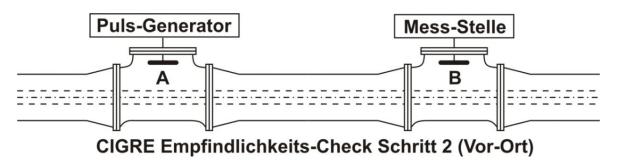

UHF-TE-Messung Schmalband (variabel)

Standardisierte Messtechnik & Signalverarbeitung => reproduzierbar (auch in 50 Jahren)

Weitere UHF-Messverfahren

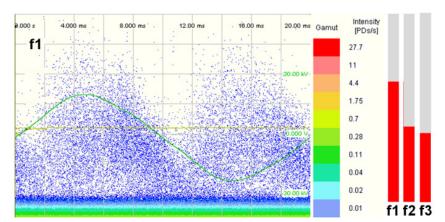
Vorteil: Parallele Messung von mehreren Sensoren; (=> Monitoring)


Nachteile: - Unempfindlicher, da Störfrequenzen (EMV, Radar, Handy, etc.) nicht mehr selektiv ausgewichen werden kann


- Spezifische Informationen aus dem Spektrum nicht zugänglich (für Eingrenzung der TE)

Neuster Ansatz: "Tuned medium band UHF Method" [7]

Voreinstellung von z.B. 1 ... 3 Frequenzbänder mit Bandbreite von ca. 50 .. 150 MHz



Kombination der Vorteile der Fixband-Methode:

 Zeitgleiches Messen an beliebig vielen Sensoren

& der Schmalband-Methode (variabel):

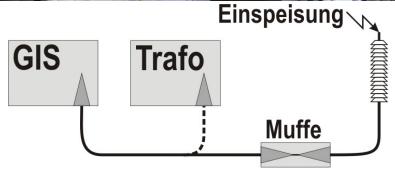
- Störungen selektiv ausweichen
- Individuelle Empfindlichkeits-Optimierung eines jeden Sensors
- Grobortung durch frequenzabhängige Dämpfung: Verwendung von z.B.
 3 Frequenzbändern

[7] Hoeck S., Neuhold S.; Tuned Medium Band UHF PD Measurement Method fot GIS; CIGRE 2012; Paris; 2012

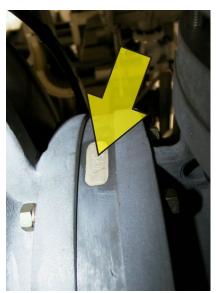
Schnittstellen - Integrale Prüfung

- Nicht ideale Situation (nicht alle Teile der GIS geprüft):
 - Spannungswandler werden nicht mitgeprüft (f < 80Hz / 50Hz Testset)
 - Öffnen von Gasräumen nach HS-Prüfung:
 - GIS Kabelendverschluss (konventionell); Prüfung bis Link / Trenner
 - Sammelschiene (Pr

 üfadapter)
 - Spannungswandler (nach HS-Prüfung aufgesetzt)
- Ideale Situation (Integrale Prüfung alle Teile der GIS geprüft):
 - Spannungswandler werden mitgeprüft (f > 80Hz (RTS) bzw. spezifisch für tiefere Frequenzen ausgelegt)
 - Kein Öffnen der GIS nach der HS-Prüfung:
 - Steckbare Kabelendverschlüsse; Verwendung von Blindstopfen
 - Einspeisung HS via Freiluft-Abgang / steckbares Prüfkabel
 - Einspeisung HS via Kabel-Abgang mit Freiluft-Endverschluss (U_r erhöht)
 - Prüfung der Kabel (- Schnittstellen) im eingesteckten Zustand (lange Kabel / tiefe Frequenzen => Wandler auslegen / abtrennen)


Schnittstellen - Integrale Prüfung (II)

Beispiele


Vorhandener Freiluftabgang

Prüfadapter (Kabelstecker)

Kabelprüfung via Prüfmuffe (Kabelstecker)

TE-Messungen von Altanlagen

Anlass:

- Fehler im Betrieb aufgetreten => Check der ganzen Anlage
- Qualitätsproblem nachträglich bekannt geworden
- Verlängerung des geplanten Betriebes einer Altanlage
 - => Bestimmung des Isolationszustandes
- Anbau weiterer Felder (Mit-) Überprüfung alte Sammelschiene

Durchführung:

- Ideale Voraussetzung: UHF-TE-Sensoren sind eingebaut
- Je nach Anlagen-Design: Externe UHF-Sensoren verwendbar

Empfindlichkeit externer Sensoren:

• Für spezifische Konfigurationen: Vergleichbare Empfindlichkeiten erreichbar; es sind jedoch mehr Messstellen erforderlich

Empfehlung: Konsequenter Einbau von genügend UHF-Sensoren

HS-Tests von Altanlagen

Anlass:

Fehler im Betrieb aufgetreten

Empfehlung CIGRE [8]:

"The majority of respondents ... That the voltage test procedure performed after a major failure repair is the same as at commissioning"

Anlass:

Anbau weiterer Felder – (Mit-) Überprüfung alte Sammelschiene

Praxis:

Gleiche Prüfspannung (wie neuer GIS-Teil)

FKH

Zusammenfassung

Um die Verfügbarkeit von GIS hoch zu halten und die Forderung der Verbesserung der Prüfqualität der CIGRE umzusetzten wird empfohlen:

- Hochempfindliche TE-Messungen bei hohen Wechselspannungs-Pegeln durchzuführen
- Die Betriebsgefährdung von TE-Resultaten aufgrund von Fehlertypen und konkreten Situationen und nicht aufgrund von TE-Pegeln zu beurteilen
- Der Einbau von genügend UHF-TE-Sensoren:
 - Hohe Messempfindlichkeit trotz externen Störungen
 - Nachmessungen im Betrieb / bei Erweiterungen möglich
 - Schnelle Ortung
- Integrale Prüfung:
 - Kein nachträgliches Öffnen der GIS
 - Schnittstellen werden geprüft

Ausblick

- Trend zur Integralen Prüfung:
 - Viele der kürzlich geprüften Anlagen wurden "integral" geprüft
 - Einspeisung für GIS-Prüfung wenn nur Kabel-Abgänge vorhanden: Via Freiluft-Endverschlüsse der Trafokabel (Wahl der entsprechenden Spannungsklasse für den Freiluft-Endverschluss)
- Trend zur Nachmessung von Altanlagen:
 - Im Betrieb
 - Nachprüfung bei Erweiterung
- Trend zur TE-Messung bei immer tieferen Spannungsebenen
 - Aktuell: UHF Messung bei 50 KV / konventionelle Messung bei 24 kV
 - Dies zeigt, dass die Möglichkeit zusätzliche Fehler zu eliminieren sowie der Gewinn an Informationen über die dielektrische Integrität weit höher eingeschätzt werden als die geringen Mehrkosten einer TE-Messung

Zuverlässigkeit GIS (II)

Praxis: CIGRE Umfragen [4]

© FKH, 2013, Dr. S. Neuhold

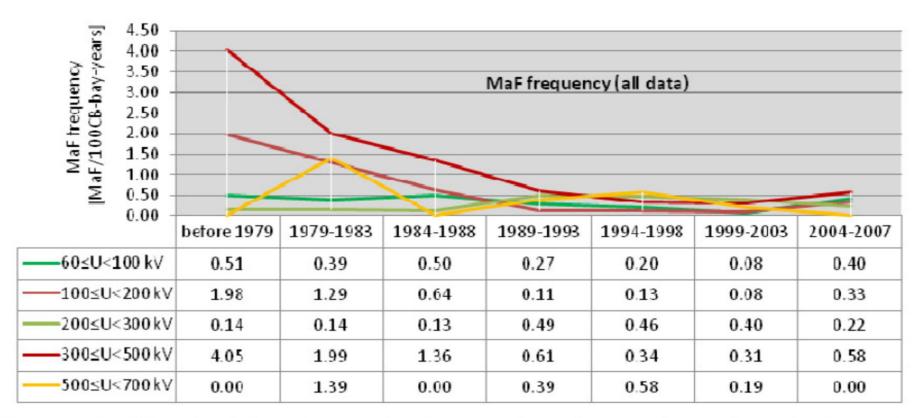


Figure 1- 13 GIS major failure frequencies for manufacturing year intervals and voltage classes

[4] Final Report of the 2004 – 2007 International Enquiry on Reliability of High Voltage Equipment; Part 1; page 42/43; CIGRE October 2012

Erkenntnisse aus den CIGRE Umfragen II

Einfluss der Empfehlungen der CIGRE JWG 33/23.12 (Electra No. 176, Februar 1998; Seite 87^[5]

Rated voltage GIS U _r [kV]	Spannungsprüfung vor Ort (1 Minute)					TE-Messung				Ausfallrate Pro 100 Feld-Jahren	
	IEC 62-271-203		CIGRE JWG 33/23.12		IEC 62-271-203		CIGRE JWG 33/23.12		Ziel: 0.1 (IEC)		
	U _p BIL (Werk)	Werksprüfu ng U _d	U _{ds} Vor Ort (ca. 80% U _d)	Empfehlu ng vor Ort:	Δ	Starr geerdet	Nicht starr geerdet		∆ starr geerdet	∆ nicht starr geerdet	Schnitt: 0.9
72.5	325	140	120	117	-2.5%	50	87	94	+88.0%	+8.0%	
100	450	185	165	162	-1.8%	69	120	130	+88.4%	+8.3%	
123	550	230	200	198	-1.0%	85	148	158	+85.9%	+6.8%	0.26
145	650	275	235	234	-0.4%	98	170	187	+90.8%	+10.0%	0.20
170	750	325	270	270	0.0%	118	204	216	+83.1%	+5.9%	
245	1050	460	380	378	-0.5%	170	294	302	+77.6%	+2.7%	0.67
300	1050	460	380								
362	1175	520	425								
420	1425	650	515	520	+1.0%	290	504	416	+43.4%	-17.5%	1.8
550	1550	710	560								3.9
800	2100	960	760								

- Die GIS ist auch für eine TE-Messspannung vor Ort bei nicht starr geerdetem Netz dimensioniert (um Faktor 1.73 höherer Pegel als bei starr geerdetem Netz)
- Der Erfahrungsbericht der CIGRE Joint Working Group JWG 33/23.12 zeigt klar auf, dass wenn die deutlich erhöhten Fehlerraten der oberen Spannungsebenen verringert werden sollen, die TE-Messspannung vor Ort erhöht werden soll um auch Fehler zu detektieren, die sonst nur mit der Blitzsstossprüfung vor Ort noch detektiert werden können.
- CIGRE Empfehlung für Vor Ort AC-Prüfungen mit TE-Messung:
 - 1 Minuten Prüfspannung: "An rms value U₁ equal to the highest value of the pair 0.36 x LIWL and 0.8 x ACWL, shall be applied for 1 minute"
 - "After this test, PD measurements at 0.8 x U_t shall be taken and the highest permissible PD intensity shall be about 5 pC or equivalent"
 - "If the noise level does not allow the desired PD sensivity to be reached, the alternative is an additional LI test at 0.8 x LIWL with time to peak T₀ < 15 μs"

<u>Fazit: Es macht Sinn die TE-Messspannungen auf den von der CIGRE empfohlenen Wert anzuheben oder zumindest auf den Wert für "nicht starr geerdete Anlagen" gemäss der IEC 62-271-2003.</u>

[5] CIGRE Joint Working Group 33/23.12; Insulation co-ordination of GIS; return of experience on site and diagnostic techniques; Electra No 176; February 1998

Prüfmethoden – IEC 62271-203 (2003)

 Alle Teile einer Anlage sollen geprüft werden (Komponenten, Transporteinheiten, ganze Anlage)

• Werk:

- Stehwechselspannungsprüfung (AC, 1min.) gefolgt von TE-Messung (keine Angabe über Dauer der Beanspruchung)
- Anforderung: TE <5pC
 (je nach Norm <10pC für einzelne Komponenten)

Vor Ort:

- Jeder neu installierte Teil einer GIS soll geprüft werden
- Prozedur A (empfohlen für ≤170 kV): Nur AC-Prüfung
- Prozedur B (empfohlen für ≥245 kV): AC-Prüfung & TE-Messung
- Prozedur C (Alternative zu B): AC-Prüfung & Stossspannungsprüfung

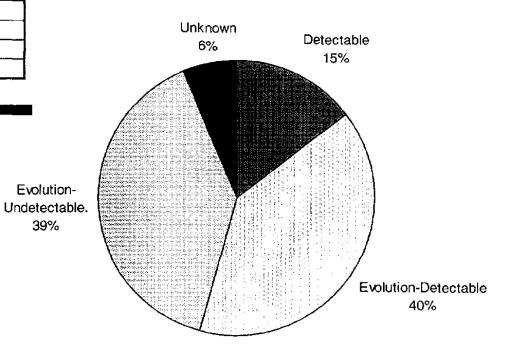
Teilentladung: Bedeutung (II)

39%

Ausfallraten von GIS

TABLE 1. Cumulative bay years of GIS included in the survey, number of dielectric failures and dielectric failures per 100.bay.years.

Voltage levels	bay.years	Number of	Dielectric failures		
		dielectric failures	per		
		<u></u>	100.bay.years		
125-145 kV	9334	24	0.26		
245 kV	6133	41	0.67		
420 kV	3351	61	1.8		
550 kV	1109	43	3.9		
all voltages	17734	165	0.9		

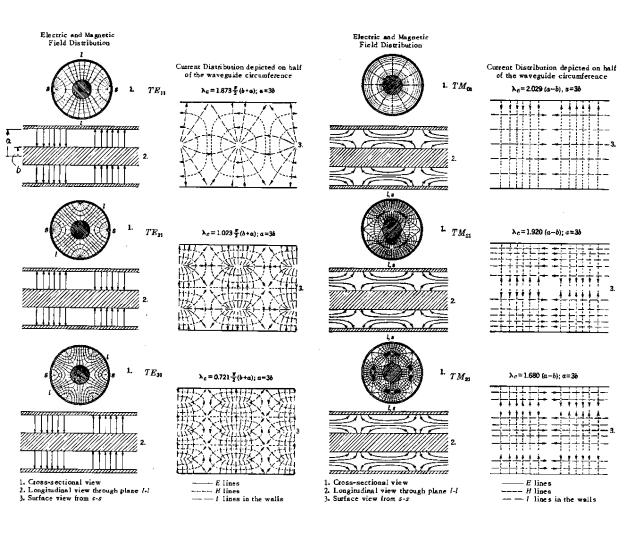

ÉLECTRA No. 176 FEBRUARY 1998

Ziel: 0.1 %

[IEC-Publication 60071-2; Insulation coordination;

Part 2; Application Guide, Third edition 1996-12]

(on-line) Messbarkeit mit TE-Messung



[Electra No 176; Februar 1998]

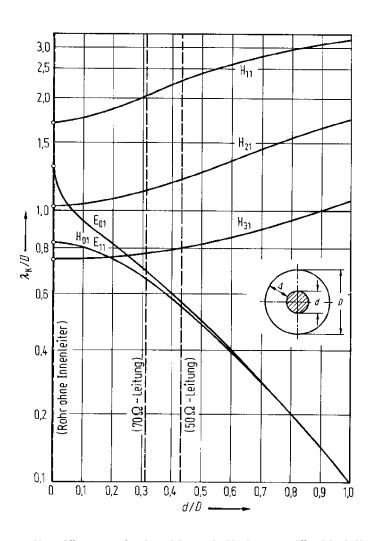
73

Wellenausbreitung in GIS (II)

Wellen höherer Moden:

- Kompliziertes Reflexions Dämpfungsverhalten
- Zusätzliche Komplizierung des Übertragungsverhalten durch zahlreiche Diskontinuitäten (Abzweigungen, Krümmungen Isolatoren, Exzentrizitäten, etc.)

Entlang des Umfangs entsteht eine Abhängigkeit der el. & magn. Feldstärke => Einbaulage des Sensors entlang Umfang nicht ohne Einfluss auf Empfindlichkeit


GIS: "Heavily overmoded waveguide"

Höhere Ausbreitungsmoden in Koaxialleitungen

Reich, H. J, Ordung, P. F., Krauss, H. L., Skalnik, J. G.: Microwave Theorie and Techniques, New York, 1953

Wellenausbreitung in GIS (I)

Hohlleiterwellen:

Tiefste Grenzfrequenz: H11-Welle (TE-Welle)

Für Leitungswellenimpedanz Z = 50 Ohm: Bereits bei $\lambda/D \approx 2.3$ ist Ausbreitung im H11-Mode möglich

Bsp: Für D = 30cm

Ausbreitung H11 für $\lambda \le 69$ cm (f ≥ 435 MHz)

Grenzwellenlängen λ der Koaxialleitung für Hohlleiterwellen (Wellenlängen, bei denen Ausbreitung stattfinden kann)

Lange, Löcherer (Hrsg.): Meinke, Grundlach, Taschenbuch der Hochfrequenztechnik, Berlin 1992, 5. überarb. Aufl. (Abschitt K 4.9, Bild 52)

