Gewittermessungen der Jahre 1936 und 1937

Bericht an die Forschungskommission des SEV und VSE für Hochspannungsfragen (FKH)

Von

K. Berger, Zürich

Sonder-Abdruck aus dem Bulletin des Schweizerischen Elektrotechnischen Vereins Jahrgang 1943, Nr. 13

1943 A.-G. Fachschriften ·Verlag & Buchdruckerei, Zürich

___ $\sum_{i=1}^{n}$ $\langle \rangle$ Sonder-Abdruck aus dem Bulletin des SEV, Jahrgang 1943, Nr. 13

Gewittermessungen der Jahre 1936 und 1937

Bericht an die Forschungskommission des SEV und VSE für Hochspannungsfragen (FKH)

von K. Berger, Zürich

Als Fortsetzung der zuletzt im Jahr 1936 veröffentlichten Berichte des Versuchsingenieurs über die Messungen der FKH an Hochspannungsleitungen zur Bestimmung der durch Gewitter verursachten Ueberspannungen werden im folgenden die Resultate der Messungen aus den Jahren 1936 und 1937 veröffentlicht. Diese Messungen wurden an der Gotthardleitung (150 kV) und an der Leitung Lavorgo-Veveri (80 kV) gemacht. Als Messinstrumente dienten wieder die im SBB-Messwagen eingebauten Kathodenstrahloszillographen. Weiter wurden Messungen mit Klydonographen und mit Stahlstäbchen gemacht. Die Messungen bestätigen die Resultate der früheren Untersuchungen. Die Form der Gewitterüberspannungen ist sehr mannigfaltig. Ganz hohe Spannungen kommen nur bei nahen Blitzeinschlägen in die Leitung vor. Soweit die Frage der Leitungsüberspannungen mit dem Kathodenstrahloszillographen abgeklärt werden kann, dürften diese Messungen mit dem Bericht praktisch abgeschlossen sein. In Zukunft werden sich die Studien auf die Vorgänge in unmittelbarer Nähe des Blitzeinschlags, also auf die Messung des Stromes im Blitz selber konzentrieren.

Im Anhang wird über die Bestimmung der Wellenfortpflanzungsgeschwindigkeit längs der Gotthardleitung als Grundlage der Fehlerortsmessung mit dem Kathodenstrahloszillographen berichtet.

1. Untersuchte Objekte

In den Gewitterperioden der beiden Jahre 1936 und 1937 standen die gleichen Hochspannungsleitungen für die Gewitteruntersuchungen zur Verfügung wie in den Vorjahren 1934 und 1935. Es ist dies hauptsächlich die mit 150-kV-Drehstrom betriebene Gotthardleitung Lavorgo-Amsteg mit den Ausläufern nach den Endstationen Bodio (Tessin) und Rathausen (1936), bzw. Gösgen (1937), wo die Energie transformiert wird. Ebenso wurde die 80-kV-Drehstromleitung von Lavorgo über Bodio nach Reazzino-Ponte Tresa-Italien (Veveri) mit den 3 im Eisenbahnwagen eingebauten Kathodenstrahl-Oszillographen (KO) überwacht.

Eine Beschreibung dieser beiden Leitungen wurde im letzten Bericht über unsere Gewittermessungen bereits gegeben; wir verweisen darauf ¹). Eine Aenderung gegenüber damals entstand lediglich durch die Weiterführung der 150-kV-Leitung von Rathausen bis Gösgen seit Ende 1936. Die Ausrüstung beider beobachteten Leitungen war bis auf hier belanglose Einzelheiten die gleiche wie in den Vorjahren 1934 und 1935. Dagegen

¹) Bull. SEV 1936, Nr. 6, S. 145.

 $621.3 \ 015.3.0014$

Faisant suite aux rapports publiés en 1936 par l'ingénieur chargé des essais entrepris par la FKH, en vue de déterminer les surtensions provoquées par les orages dans les lignes à haute tension, le présent rapport est consacré aux mesures effectuées en 1936 et 1937 sur la ligne du Gothard (150 kV) et sur celle de Lavorgo-Veveri (80 kV). Ces mesures, faites à l'aide des oscillographes cathodiques installés dans une voiture des CFF, ainsi que de clydonographes et de barreaux d'acier, confirment les résultats précédents. La forme des surtensions dues aux orages varie beaucoup. Des tensions très élevées ne se présentent qu'à proximité immédiate des coups de foudre dans les lignes. Pour autant que la question des surtensions dans les lignes aériennes puisse être élucidée à l'aide d'oscillographes cathodiques, ces mesures peuvent être maintenant considérées comme terminées. A l'avenir, les études porteront plus particulièrement sur les phénomènes qui se produisent au point d'impact de la foudre, c'est-à-dire sur la mesure du courant de foudre proprement dit.

En annexe figure un rapport sur la détermination de la vitesse de propagation des ondes le long de la ligne du Gothard, en vue de la localisation des défauts à l'aide de l'oscillographe cathodique.

schien es, als ob sich die Masterdungen der Bergstrecke der Gotthardleitung gegenüber früher verschlechtert hätten, da bei Widerstandskontrollen höhere Ohmwerte festgestellt wurden. Die Erscheinung hängt möglicherweise mit dem Ausschwemmen des beim Bau verwendeten Lehmes zusammen.

2. Messeinrichtungen

Wie in beiden Vorjahren kamen zur Ausmessung der atmosphärischen Ueberspannungen folgende Messmittel zur Anwendung:

a) Der aus 3 einzelnen Kathodenstrahloszillographen zusammengebaute KO der FKH, der, wie früher, in einen Bahnwagen der SBB eingebaut war.

b) Je ein Klydonograph in den Anlagen Bodio, Lavorgo, Amsteg und Rathausen an der 150-kV-Leitung, ferner je ein weiterer in den 80-kV-Anlagen Bodio und Lavorgo.

c) Stahlstäbchen zur Messung des Scheitelwertes von Blitzströmen.

d) Steilheitsmesser zur Messung der grössten Steilheit von Blitzströmen. Die Einrichtungen c und d waren in erster Linie auf Masten der Gotthardleitung eingebaut, daneben wurden aber auch Teilstücke von 3 andern Höchstspannungsleitungen mit Stahlstäbchen ausgerüstet, ferner 2 Berggipfel, nämlich der Windmesser auf dem Säntis und der Aussichtsturm auf dem Bachtel im Zürcher Oberland.

 $Zu \ a$): Zu den oszillographischen Messungen mit dem KO-Messwagen wurden die gleichen Gáborschen Spannungsteiler benutzt wie in den Vorjahren. Diese sind zusammengesetzt einerseits aus je 2 Widerständen zu ca. 5500 Ω pro Phase, bestehend aus Manitlösung in Porzellanrohren mit Silberelektroden. Der Widerstandswert der 12 benutzten Rohre hat in den 4 Jahren nicht wesentlich geändert; dagegen nahm die Abhängigkeit des Widerstandes von der Temperatur, die ja für Manit ausserordentlich klein sein soll, mit der Zeit zu. Es scheint sehr schwierig zu sein, einen Manit-Widerstand so rein herzustellen, dass er seine Unabhängigkeit von der Temperatur jahrelang beibehält. Äls Kapazitäten der Spannungsteilung wurden stets Kabelstücke benutzt, und zwar für 150 kV dieselben Oelkabel, für 80 kV die gleichen Massekabel wie in den beiden Vorjahren. Trotzdem diese Kabelstücke der grellen Sonne ausgesetzt waren, hielten sie sich anstandslos. Die Prüfung der Oelkabel geschah jeweils im Frühling mit Wechselspannung von 170 kV Effektivwert gegen Erde während ca. 1/2 Stunde. Das Uebersetzungsverhältnis der Spannungsteiler in 150 und 80 kV wurde auf denselben Wert eingestellt.

Die Kathodenstrahl-Oszillographen (KO) waren genau dieselben wie in den Vorjahren. Wegen des Dauerbetriebs wurden alle 3 Kathoden erstmals drehbar gemacht, um mehrere Ansatzstellen des Kathodenstrahls ausnützen zu können, bevor eine Auswechslung der Kathode nötig wird.

Die Zeitablenkung der Kathodenstrahlen geschah im Sommer 1936 wie in den Vorjahren mit Hilfe einer sinusförmigen Hilfsspannung, die von einem 300-Hz-Generator geliefert wurde. Im Sommer 1937 wurde dagegen zum ersten Mal eine neue Schaltung zur Erzielung einer beliebig oft wiederholten und linearen Zeitablenkung angewendet. Sie besteht in einer Elektronenröhre und einer einstellbaren Funkenstrecke, über welche ein Kondensator periodisch geladen und entladen wird. Das Bedürfnis zu einer solchen Schaltung entstand aus den schlecht auswertbaren Umkehrpunkten der sinusförmigen Zeitablenkung. Wenn ein Ueberspannungsvorgang gerade im Moment der Umkehr der Zeitablenkung auftritt, kann die Zeitdauer der Ueberspannungen nicht ausgewertet werden. Mit dem neuen «Zeitrelais» ist dies dagegen in allen Fällen möglich. Die Gesamtzeitdauer für die Niederschrift eines Oszillogramms beträgt ca. 0,02 s, d. h. 1 Periode der Betriebsfrequenz 50/s, bei einem KO etwas weniger. Leider zeigte sich erneut, dass bei Mehrfachblitzen ein Teil der Ueberspannung für die Aufzeichnung verloren gehen kann. Nach einer Oszillogramm-Aufzeichnung braucht nämlich der KO bzw. sein Zeitrelais mehrere Zehntelsekunden, bis es zur nächsten Aufzeichnung wieder bereit ist. Entstehen innert diesen Zehntelsekunden weitere Teilblitze eines und desselben Gesamtblitzes, so ist der KO noch nicht schreibbereit. Will es der Zufall, dass der erste Teilblitz die Leitung nicht direkt traf, wohl aber der 2. oder 3. Teilblitz, dann geht er für die Aufzeichnung verloren. Ein Beispiel

eines Mehrfachblitzes, bei dem die Auslösung des Oszillogramms auf Grund einer nur kleinen Ueberspannung geschah, und wo dann nach etwas mehr als $^{1/50}$ s ein wesentlich stärkerer Ueberspannungsstoss folgte, der von 2 KO gerade noch erfasst wurde, während der dritte KO bereits gesperrt war, zeigt Fig. 18. Wäre der zweite Teilblitz, der die grössere Ueberspannung veranlasste, nur eine weitere $^{1/50}$ s später erfolgt, so würde sich im Oszillogramm nur die unbedeutende erste Ueberspannung zeigen.

Man könnte Abhilfe suchen durch sofortige Wiederbereitstellung des KO, nachdem er ein Öszillogramm geschrieben hat. Leider entstehen dann so viele Auslösungen kurz nacheinander, dass die Oszillogramme überladen werden. Eine Registriereinrichtung für die Erfassung aller Ueberspannungen bietet somit noch ein interessantes Problem, dessen Lösung vermutlich in der Bereitstellung vieler und beliebig rasch nacheinander erfolgender Auslösungen (Entsperrungen) des Kathodenstrahls liegt, wobei jede Auslösung ein Oszillogramm mit beschränkter Zeitdauer (z. B. 5000 µs) niederschreibt. Eine andere Möglichkeit wäre die, die Intensität des Kathodenstrahls durch die zu messende Ueberspannung modulieren zu lassen, derart, dass er nur während der Ueberspannungsdauer sehr intensiv, sonst aber nur sehr lichtschwach schreibt.

Zu b): Die Klydonographen-Installation wurde gegenüber den Vorjahren nicht geändert. Trotz der weitgehend glimmfreien Luftkondensatoren zur Hochspannungsteilung sind wir zur Ueberzeugung gekommen, dass diesen Einrichtungen Fehler anhaften, welche ihre Verwendung als Messinstrument in Frage stellen, solange sie nicht in jedem Fall mit dem KO kontrolliert werden können.

Zu c) und d): Die Anordnung der «Blitzstäbchen» und Steilheitsmesser auf den Masten der Gotthardleitung blieb die gleiche wie in den Vorjahren. Aus rein praktischen Gründen wurde die Befestigung der «Blitzstäbchen» verbessert durch Einbau in isolierende, geschlossene Röhrchen, weil es sich erwiesen hatte, dass eine grössere Anzahl Stäbchen im Winter durch Schnee und Eisabfall von den Masten beschädigt worden war. Auch die an den Erdseilen befestigten Stäbchen wurden derart eingeschlossen, weil die vorher in Bohrungen einer horizontalen Holzleiste lose von oben eingesteckten Stäbchen spurlos verschwanden. Die Erscheinung war am deutlichsten in vogelreichen Gegenden, insbesondere in der Westschweiz. Es muss angenommen werden, dass Vögel, vor allem wohl Elstern, für dieses Verschwinden der losen Erdseilstäbchen verantwortlich sind.

Die auf einigen Berggipfeln ausgesetzten Stahlstäbchen wurden aus obigen Gründen von Anfang an in Holzleisten mit durch Korkzapfen abgeschlossenen Bohrungen hineingesteckt.

Sodann wurden an der Gotthardleitung auch einige Aufhängebolzen der Isolatorenketten mit Stäbchen ausgerüstet, um unterscheiden zu können, ob Ueberschläge infolge Ueberspannung des Phasenleiters oder des Mastes (Rücküberschlag) entstehen (siehe Fig. 12).

3. Resultate

a) Oszillographische Messungen.

Die 3 KO waren im Sommer 1936 vom 11. Mai bis Mitte Oktober im Betrieb, im Sommer 1937 vom 30. Mai bis zum 3. Oktober. In dieser Zeit wurden insgesamt ca. 850 + 450 dreiphasige Oszillogramme atmosphärischer Ueberspannungen aufgenommen. Die meisten davon zeigen eine einmalige Ueberspannung, welche die Leitung wenige Male durchläuft und dann abgeklungen ist. Ein Teil der Oszillogramme dagegen zeigt nach Abklingen der 1. Ueberspannung und bereits wieder beruhigter Leitungsspannung plötzlich einen 2. oder sogar 3. Ueberspannungsstoss. Es ist anzunehmen, dass diese Mehrfach-Ueberspannungen von Mehrfachblitzen herstammen. In Tabelle I ist die Häufigkeit solcher Teilblitze innert der Oszillogramm-Dauer, d. h. innert ca. ¹/₅₀ s, angeführt.

Anzahl registrierter Teilblitze, Lavorgo 1936/37

	Jahr	
······	1936	1937
Aufgenommene und ausge- wertete Oszillogramme . Anzahl Oszillogramme, die	850	450
blitze erkennen lassen . Anzahl Oszillogramme mit	105	70
3 Teilblitzen innert ca. $1/_{50}$ s	7	7

Ueber die Häufigkeit der verschieden hohen atmosphärischen Ueberspannungen auf den beiden Leitungen für 150 und 80 kV geben Fig. 1 und 2 Auskunft. Verglichen mit den Vorjahren 1934 und 1935 ist die Zahl der aufgenommenen Oszillogramme eher kleiner, insbesondere derjenigen, welche kleine Ueberspannung zeigen. Dies hängt mit einer etwas weniger empfindlichen Einstellung des Auslöserelais zusammen. Die grössern Ueberspannungen sind dagegen im 150-kV-Netz im Mittel etwa gleich häufig wie in den Vorjahren. Im 80-kV-Netz ist das Jahr 1935 durch abnormal starke Gewittertätigkeit ausgezeichnet. Es muss erwähnt werden, dass die Höhe der Ueberspannungen wie in den Vorjahren als Abweichung von der sinusförmigen Betriebsspannung gezählt wurde. Je nach dem Phasenmoment der Betriebsspannung kommt daher die gemessene Ueberspannung nicht als absolute Ueberspannung gegen Erde in Erscheinung; die Zahl der Ueberschreitungen des Scheitelwerts der normalen Betriebsspannung ist somit wesentlich kleiner als die Zahl der in den Kurven dargestellten «Ueberspannungen».

Die Anzahl «Ueberspannungen» pro Sommer, welche den Scheitelwert der verketteten Betriebsspannung an Grösse übertreffen, beträgt in den 4 Beobachtungsjahren im 80-kV-Netz 25...100, im 150-kV-Netz 7...18. Ueberspannungen von doppelter Scheitelwerthöhe der Betriebsspannung entstehen im 80-kV-Netz 8...20mal pro Sommer, im 150-kV-Netz nur mehr 2...6mal pro Sommer. Diese Angaben beziehen sich naturgemäss auf den Messpunkt Lavorgo, der für das 80-kV-Netz eine Kopfstation, für das 150-kV-Netz eine Durchgangsstation darstellt.

uon Scheitelwert der normalen Betriebs-Sternspannung.
 uon Scheitelwert der normalen verketteten Betriebsspannung.
 Abszisse um: Höhe der vom Blitz erzeugten, der momentanen Betriebs-Wechselspannung überlagerten Ueberspannung.

Ordinate n : Anzahl jener Ueberspannungen, deren Höhe den Abszissenwert erreicht oder übersteigt.

Da die atmosphärischen Ueberspannungen nur infolge der Spannungsbegrenzung durch die Anlagenisolation mit der Betriebsspannung zusammenhängen, könnte man die Ueberspannungen beider Netze auch absolut, d. h. ohne Rücksicht auf die Betriebsspannung, vergleichen. Es würde sich folgendes ergeben:

In der Kopfstation (80 kV) entstehen pro Sommer ca. 15...30 Ueberspannungen von mindestens 100 kV Höhe, in der Durchgangsstation (150 kV) jährlich ca. 8...25 solche. Ueberspannungen von mehr als 50 kV Höhe sind etwa 3mal häufiger als solche mit mehr als 100 kV. Ueberspannungen von mehr als 200 kV kommen pro Sommer nur wenige vor, im Durchschnitt etwa 5. Die Anzahl derart hoher Ueberspannungen wird etwa gleich gross wie die Anzahl direkter Blitzeinschläge in die Leitung pro Jahr.

Wie betont wurde, sind die gemessenen Zahlenwerte der Spannungen stets die dem momentanen Wert der Betriebsspannung überlagerten Spannungen, nicht die absoluten Ueberspannungen gegen Erde, deren Anzahl naturgemäss kleiner ist. Es ist ersichtlich, dass die Anzahl wirklich hoher Ueberspannungen pro Sommer an einem bestimmten Messpunkt auch bei hochisolierten Leitungen, wie dies bei den beobachteten Leitungen der Fall ist, in unsern Gegenden sehr klein ist. Ein Ableiter für atmosphärische Ueberspannungen muss pro Sommer nur wenige Male in Aktion treten, wenn es sich um Uebertragungsnetze handelt, Zugleich muss auch hier auf die grosse Bedeutung einer gewissen Minimal-Isolation für an Freileitungen angeschlossene Anlagen hingewiesen werden. Hochspannungsanlagen ohne Ableiter sollten mehr als ca. 50 kV Stossüberschlagsspannung der Isolatoren aufweisen; wenn nicht, sind bei Gewitter allzu oft Ueberschläge zu erwarten. Es ist bemerkenswert, dass sich diese Isolationshöhe rein empirisch in den Werkbetrieben ergeben hat, denn auch unsere 8-kV-Anlagen wurden allmählich so isoliert, dass sie dieser Anforderung entsprechen.

Auf der Leitung selber können die Ueberspannungen wesentlich höher sein, als sie in der Messstation Lavorgo waren. Dies gilt besonders für hohe Ueberspannungen, welche beim Durchlaufen der Leitung sehr stark gedämpft werden. Für die kleinen und damit meistens länger dauernden Ueberspannungen ist diese Dämpfung kleiner, so dass für die Freileitungen ungefähr dieselbe Forderung gilt, nämlich eine Minimal-Isolation, welche mindestens 50 kV kurzzeitig standhält. Interessanterweise ist die Praxis schon längst zu diesem Resultat gekommen, sogar für Schwachstrom- und Sekundär-Leitungen, die ja ebenfalls den Gewittern ausgesetzt sind.

b) Klydonographen-Messungen.

Die Häufigkeitskurven der in einigen Stationen mit Klydonographen gemessenen absoluten Ueberspannungen gegen Erde sind in Fig. 3...5 dargestellt.

Aus der mehrjährigen Erfahrung heraus sind wir zum Schluss gekommen, dass den Klydonographen als Tastorganen für Ueberspannungen Bedeutung zukommt, dass sie aber als «Messinstrumente» mit grösster Vorsicht aufzunehmen sind. Eine Diskussion der Häufigkeitskurven erübrigt sich hier.

c) Blitzstrommessungen.

Die Gesamtzahl der an Masten und Erdseilen vom Blitz magnetisierten «Stahlstäbchen» in den beiden Sommern 1936 und 1937 betrug ca. 100. Davon weist ein Teil so schwache Magnetisierung auf, dass sie nicht ausgewertet wurde. Die restlichen 86 Stück ergeben Häufigkeiten von Blitzstromanteilen in Masten und Erdseilen nach Tabelle II.

Magnetisierte Stahlstäbchen 1936 und 1937

	Tabelle		
Blitzströme	in Masten	im Erdseil	
grösser als 2 kA grösser als 5 kA grösser als 10 kA grösser als 20 kA grösser als 30 kA grösser als 40 kA	30 23 17 5 2 0	56 35 22 2 0 0	

Wie in den beiden Vorjahren sind grössere Blitzströme als 40 kA in Masten in keinem Fall nachgewiesen worden. Die Grösse des gesamten Blitzstromes lässt sich in einigen Fällen schätzen, bei denen Stäbchen sowohl an Masten, als auch an den Erdseilen eingebaut waren. Einige solche Beispiele sind in Fig. 6...13 dargestellt.

In den Bildern bezeichnen die Pfeile durchwegs die Richtung des *negativen* Blitzstromes, d. h. die Richtung der Elektronen. Da weitaus die meisten Blitze negative Ladungen zum Boden führen, gibt diese Pfeilrichtung anschaulichere Bilder als umgekehrt, weil die Pfeilrichtung dann mit der üblichen Vorwachsrichtung des Blitzes von der Wolke zum Boden zusammenfällt.

Nicht immer ist der Blitzschlag so einfach wie in Fig. 6, wo die Erdseil-Stromrichtungen die Einschlagsstelle zwischen den Masten 134 und 135 klar erkennen lassen, und wo die beiden pro Mast befestigten Stahlstäbchen mit 10 und 50 cm Abstand vom Mast ungefähr gleiche Stromwerte erge-

Blitzstromverteilung (kA) nach Messung mit «Stahlstäbchen», 150-kV-Leitung Rathausen—Immensee, ohne Erdseil, Blitzeinschlag vom 4. September 1937 (Osz. siehe Fig. 31)

ben (16/19,7 kA, 13/13,7 kA). Die Unklarheit des Bildes bei Mast 137, wo der Maststrom scheinbar verkehrte Richtung aufweist, ist auf die Ungenauigkeit der Messung von Mastströmen unter 5 kA zurückzuführen.

Einfache Blitzschläge liegen weiter in Fig. 7 und 8 vor. Fig. 7 ist ein typisches Beispiel für das Verhalten einer gemischten Leitung. In der Figur sind Eisenmasten als Vierecke, Holzstangen als Kreise gezeichnet. Der Einschlagsort wurde zunächst auf Grund der oszillographischen Fehlerortsbestimmung von Lavorgo aus zu ungefähr 120 km von Lavorgo bestimmt, und dann durch das Auffinden von Splittern am Kopf der Stange Nr. 72 bestätigt. Der Blitzstrom fliesst nach beiden Seiten bis zu den nächsten Eisenmasten, die als schwache Punkte wirken. An den zwischenliegenden Stangen Nr. 73...77 zeigten sich keinerlei Spuren.

Leider kommen recht manche Fälle vor, in denen der Blitzstromverlauf auf Grund der Stäbchenmessungen nur vermutet werden kann. Die Strom-

> Fig. 6. Blitzstromverteilung (kA) nach Messungen mit ' «Stahlstäbchen» am Erdseil, 132-kV-Leitung Puidoux—Kerzers der SBB, 1936

verteilung nach Fig. 9 ist eventuell durch 2 Einschläge erklärlich. Fig. 10 und 11 geben im Gegensatz dazu 2 Beispiele jener Fälle, wo der Blitzeinschlagsvorgang unklar bleibt. Während die Erd-

Blitzstromverteilung (kA) nach Messungen mit «Stahlstäbchen», 150-kV-Leitung Bickigen—Brislach des EW Basel, mit Erdseil, 1937

seilstäbchen einfache Stösse genauer messen als die Maststäbchen, weil die Lage des Stroms zum Stäbchen genauer bekannt ist, werden die Maststäbchen von gleichpoligen Blitzströmen nicht ummagnetisiert, wie dies leider bei Erdseilstäbchen bei mehrfachen Einschlägen in verschiedene Leitungspunkte der Fall ist.

Blitzstromverteilung (kA) nach Messungen mit «Stahlstäbchen». 150-kV-Leitung Blekigen—Brislach des EW Basel, mit Erdseil, 1936

finden, Fig. 12 und 13. In Fig. 12 handelt es sich um einen Einschlag in beide Erdseile zwischen den Masten 113 und 114, mit nachfolgendem Rücküberschlag von beiden Masten nach Phase I. Auffallend ist der Abfluss des Blitzstromes, der über viele Spannweiten weg mit nur langsam abnehmendem Strom erfolgt. Dasselbe gilt von der etwa einen Monat später erfolgten zweiten Gewit-

Blitzstromverteilung (kA) nach Messungen mit «Stahlstäbchen» am Erdseil 132-kV-Leitung Kerzers-Rupperswil der SBB, 1937

terstörung im gleichen Gebiet (Fig. 13). Ausnahmsweise zeigt sich hier die Entladung einer positiven Wolke. Es scheint ein Einschlag sowohl in Mast 106 als auch in das Erdseil I der Spannweite der Masten Nr. 105 und 106 vorzuliegen. Unklar bleibt die Polarität einiger Maststäbchen, die vermutlich zum Teil verkehrt eingebaut waren.

Für die grösste Steilheit (di : dt) des Blitzstroms in Masten ergaben eich einige neue Messungen, welche die im letzten Gewitterbericht angegebene Häufigkeitskurve bestätigen. Die grösste gemessene Blitzstromsteilheit liegt bei 30...40 kA/µs.

Soll z. B. eine Holzstangenleitung gegen Zersplitterungen durch Blitzeinschläge mit einem Erdseil geschützt werden, so errechnen sich damit die höchstzulässigen Abstände der Erdungen des Erdseils aus dem induktiven Spannungsabfall längs der Leitung zwischen Einschlagstelle und Erdung. Mit einer mittlern resultierenden Induktivität der Leitung (3 Phasen + Erdseil) von L = 0.6 mH/km und ca. 5 Millionen V mittlerer Stossüberschlagspannung ü der Holzstangen muss zur Vermeidung

von Ueberschlägen unter Annahme eines Einschlags in die Mitte zwischen 2 Erdungsstellen gelten:

$$\ddot{u} > L \cdot rac{\mathrm{d}i}{\mathrm{d}t} \ 5 \cdot 10^6 > x \cdot 0.6 \cdot 10^{-3} \cdot 40 \cdot 10^9 \cdot rac{1}{2} \ \mathrm{oder} \ x < rac{5}{12} = 0.417 \,\mathrm{km}$$

Darin ist der Faktor 1/2 wegen der Aufteilung des Blitzstroms in 2 Hälften nach beiden Leitungsrichtungen gesetzt. Der höchstzulässige Erdungsabstand $(2 \cdot x)$ beträgt somit ca. 800 m. Liegen die Erdungsstellen des Erdseils soweit auseinander, so

kann bei steilstem Blitzstrom und obigen Leitungsdaten ü und L gerade noch ein Stangenüberschlag erfolgen. Liegen sie näher beisammen, so ist dies nicht mehr zu erwarten. Dabei spielen Erdungswiderstände unter 10 Ω noch keine wesentliche Rolle. Für schlechtere Erdungen ermässigt sich der höchstzulässige Erdungsabstand.

4. Oszillogramm-Beispiele von Gewitterüberspannungen

Fig. 14...31 zeigen typische Oszillogramme von Gewitterüberspannungen der beiden Jahre 1936 und 1937. Die zugehörigen Daten sind jeweils aus den Legenden ersichtlich. In allen Fällen, wo die Lage des Gewitterherdes zunächst unbekannt war, wurden zugleich beide Leitungen zur Messung mit den gegenüberliegenden Messplatten des KO verbunden. Leider ist die Auswertung in diesen Fällen nur dann möglich, wenn nicht beide Leitungen zugleich vom Blitz beeinflusst werden. Eine solche gleichzeitige Beeinflussung ist auf der Gemeinschaftsstrecke Lavorgo-Bodio möglich. Auch lässt sich die Polarität der Ueberspannung in diesen Bildern nur dann angeben, wenn nachträglich bekannt wurde, aus welcher Leitung die Ueberspannung stammte. In einem interessanten Fall wurde die Auswertung leider auf diese Weise praktisch unmöglich gemacht, nämlich bei einem direkten Blitzeinschlag in beide Leitungen auf der 8,3 km langen

Gemeinschaftsstrecke Lavorgo-Bodio (Gewitter vom 24. Juli 1937, Einschlag 14.40 Uhr bei Chironico). Da am Mast mindestens 3 Leiter überschlugen und der KO die Spannungen zwischen je 2 Seilen misst,

Fig. 14. Gewitter vom 26. Juni 1936, 16.00 Uhr, Osz. 3/142 Messung zugleich an Gotthardleitung und Leitung Süd (80 kV), Gewitter über Leitung Süd.

ist leider die Auswertung der Spannungen gegen Erde nicht möglich. Das betreffende Bild wird hier nicht reproduziert.

Die Bilder zeigen im allgemeinen Ueberspannungen, die wesentlich tiefer sind als die Ueberschlagsspannung der Isolation in Lavorgo. Dies gilt auch dann, wenn es auf der Leitung infolge des Blitzes zum Ueberschlag kam. Ursache ist die beträchtliche Dämpfung der Ueberspannungen längs der Leitung. Die Abklärung dieser Frage wird in einem andern Bericht gegeben werden.

Besonders zu erwähnen ist Fig. 31, welche einen Blitzschlag in eine angeschlossene Holzstangenstrecke (SK-Leitung Amsteg-Rathausen) darstellt, wobei der Blitzstrom gemäss Fig. 7 mit Stahlstäbchen bestimmt werden konnte. Es entstand an jenem Morgen ein Kurzschluss, dessen Lage trotz Begehung der Leitung zunächst vom Personal nicht gefunden wurde. Daraufhin wurde aus dem zeitlichen Abstand der Punkte A und B des Oszillogrammes Fig. 31 die Entfernung des Kurzschlusses zu ca. 120 km bestimmt, worauf dann bei nochmaliger Leitungsbegehung am Kopf der Stange Nr. 72 tatsächlich Spuren eines Blitzeinschlags gefunden wurden, ebenso Ueberschlagsspuren an den benachbarten Eisenmasten Nr. 70/71 und 78 (Fig. 7).

Da Stange Nr. 72 keinen Ueberschlag zum Boden aufwies, lässt sich ein Maximalwert der Blitzstromsteilheit sofort ausrechnen. Bei 90 m Spannweite und unter der Voraussetzung, dass alle 3 Drähte auf der Holzstange vom Blitz erfasst wurden (es wurde sofort 3phasiger Kurzschluss festgestellt), ergibt sich bei $6 \cdot 10^6$ V Stossüberschlagsspannung der Stange und ca. 0,75 μ H/m Leitungsinduktivität:

 $L \mathrm{d}i/\mathrm{d}t < 6 \cdot 10^{6},$

und mit
$$L \simeq 90.0,75 \ \mu \mathrm{H} = 67,5 \ \mu \mathrm{H}$$

$${
m d}i/{
m d}t < rac{6}{67,5}\cdot 10^{12},$$

d. h. di/dt ist sicher kleiner als 90 000 A/µs, bei einem Blitzstrom von maximal 60 kA.

Fig. 32 zeigt ein Oszillogramm, das am 13. September 1937, morgens 8.10 Uhr, erhalten wurde. Der Betrieb erfuhr zu dieser Zeit einen Erdschluss mit anschliessendem Kurzschluss. Aus dem Oszillogramm ist keine Ueberspannung ersichtlich; dage-

Fig. 16 (links nebenstehend). Gewitter vom 28. Juli 1936, 11.40 Uhr, Osz. 6/52 Messung zugleich an Gotthardleitung und Leitung Süd (80 kV), Gewitter über Leitung Süd, Leitungskurzschluss.

gen lässt sich aus dem zeitlichen Abstand der Punkte A und B ein Erdschluss in ca. 40 km Abstand von Lavorgo bestimmen (Bätzberg-Schöllenen). Wie sich nachträglich herausstellte, bestand zu jenem Zeitpunkt kein Gewitter, dagegen starker Rauhreif. Der Erdschluss scheint die Folge des Abwurfs von

Fig. 18.

Gewitter vom 4. September 1936, 13.54 Uhr, Osz. 9/16 Messung an Gotthardleitung. (Ueberspannung erst beim 2. Teilblitz; im Osz. Phase I keine Ueberspannung ersichtlich, weil jener KO etwas früher spert, in Osz. Phase III knapp ersichtlich, daher punktiert nachgezeichnet.)

Eis zu sein. Auffallend ist die ausserordentlich flache Front des Spannungszusammenbruchs. Sie ist offenbar bedingt durch den grossen Widerstand am Erdschlussort. Die Zeitbestimmung für die Fehlerorts-Messung wird dadurch leider weniger genau als bei metallischem Erdschluss.

Die gelegentlich der Gewitterregistrierung bemerkte Möglichkeit, Fehlerorte mit dem KO zu bestimmen, gab Anlass zu einer systematischen Untersuchung der Genauigkeit dieser Methode, über deren grundsätzliches Resultat im Anhang noch kurz berichtet wird.

Fig. 17 (links nebenstehend). Gewitter vom 4. September 1936, 13.40 Uhr, Osz. 9/11 Messung an Gotthardleitung.

Fig. 19. Gewitter vom 4. September 1936, 14.19 Uhr. Osz. 9/20 Messung zugleich an Gotthardleitung und Leitung Süd (80 kV).

<u>, 1 200</u> 800

Contraction of the second

Fig. 20. Gewitter vom 4. September 1936, 14.28 Uhr, Osz. 9/22 Messung zugleich an Gotthardleitung und Leitung Süd (80 kV).

Fig. 21. Gewitter vom 20. September 1936, 16.02 Uhr, Osz. 10/23 Messung an Gotthardleitung, nahes Gewitter.

Gewitter vom 14. Juni 1937, 20.09 Uhr, Osz. 1/39 Messung an Leitung Süd (80 kV), dreipoliger Kurzschluss.

Gewitter vom 5. Juli 1937, 22.12 Uhr, Osz. 3/27 Messung zugleich an Gotthardleitung und Leitung Süd (80 kV), Kurzschluss in 80 kV, Phasen I und II.

sondere auch ihre Front- und Halbwertdauer, ist ausserordentlich mannigfaltig. Sehr hohe Spannungen kommen nur bei nahen Blitzeinschlägen

Fig. 26. Gewitter vom 12. August 1937, 17.12 Uhr, Osz. 6/26 Messung zugleich an Gotthardleitung und Leitung Süd (80 kV).

Fig. 27. Gewitter vom 12. August 1937, 20.40 Uhr, Osz. 6/42 Messung zugleich an Gotthardleitung und Leitung Süd (80 kV), Erdschluss Gotthardleitung, Phase III.

Fig. 29. Gewitter vom 14. August 1937, 19.12 Uhr, Osz. 7/31 Messung an Gotthardleitung, Erdschluss Phase III am Schutzhorn in Bodio.

Gewitter vom 13. August 1937, 14.07 Uhr, Osz. 6/46 Messung an Gotthardleitung, Gewitter im oberen Tessin.

Fig. 30. Gewitter vom 14. August 1937, 19.20 Uhr, Osz. 7/40 Messung zugleich an Gotthardleitung und Leitung Süd (80 kV), Gewitter im unteren Tessin.

in die Leitung vor. Die Wahrscheinlichkeit, solche Einschläge mit dem KO an der Leitung zu erfassen, ist klein (das Oszillogramm des nächsten beobachteten Blitzeinschlags in die Leitung ist in Fig. 19 des Gewitterberichtes der Jahre 1934/35, Bull.

Fig. 31. Gewitter vom 4. September 1937, 7.53 Uhr, Osz. 8/65 Messung an Gotthardleitung, Blitzschlag in 150-kV-Leitung, Mast 72 SK bei Ebikon, Kurzschluss. (Blitzstromverteilung siehe Fig. 7.)

SEV 1936, Nr. 6, dargestellt, der Einschlag befand sich 1,9 km vom Messpunkt Lavorgo). Soweit die Frage der Leitungsüberspannungen mit dem KO abgeklärt werden kann, dürfte dieses Problem heute als praktisch weitgehend gelöst betrachtet werden. Da sich der direkte Blitzeinschlag als wich-

Erdschluss vom 13. September 1937, 8.10 Uhr, Osz. 9/44 Messung an Gotthardleitung, Phase III.

tigster Störer entpuppt hat, beanspruchen in Zukunft vor allem die Vorgänge in unmittelbarer Nähe des Blitzeinschlags grösstes Interesse. Die weitere Blitzforschung wird sich daher zukünftig in erster Linie mit der Ausmessung des Stroms im Blitz selber befassen müssen.

5. Anhang

Bestimmung der Wellen-Fortpflanzungsgeschwindigkeit längs der Gotthardleitung als Grundlage der Fehlerortsmessung mittels KO.

Durch das Entgegenkommen und die Mithilfe der Motor-Columbus AG. in Baden und der Aare-Tessin AG. für Elektrizität in Olten (Atel) als Betriebsinhaberin der Gotthardleitung, wurde es möglich, im Herbst 1935 eine grössere Zahl von Erdschlüssen und Kurzschlüssen an der Gotthardleitung durchzuführen. Die Leitung wurde zu diesem Zweck am 5./6. und am 13. Oktober ausser Betrieb gesetzt und für die Versuche von einem separaten Generator mit reduzierter Spannung gespeist. Die Einleitung der Erd- oder Kurzschlüsse geschah über eine Funkenstrecke von 8...10 cm Schlagweite an einem Horn, das an verschiedenen Punkten der Leitung eingebaut und durch langsames Hochfahren der Spannung des Generators zum Ansprechen gebracht wurde. Der entstehende Erd- oder Kurzschluss löst Wanderwellen aus, die vom KO in Lavorgo registriert wurden. Die Abschaltung des Erd- oder Kurzschlusses geschah mittels der 150-kV-Schalter möglichst rasch. Aus der Menge der aufgenommenen Oszillogramme wurden die Laufzeiten der Wanderwellen vom Fehlerort zur Meßstelle Lavorgo und zum Leitungsende Bodio möglichst genau bestimmt und daraus mit der bekannten Entfernung des Fehlers die Wellengeschwindigkeit ausgerechnet.

Tabelle III gibt das Resultat der Auswertung aller aufgenommenen Oszillogramme. Die Zeitmessung in den Oszillogrammen geschah dabei durch nachträgliches Eichen des logarithmischen Zeitmaßstabes mit einer Eichfrequenz, deren Höhe mit einem vom Amt für Mass und Gewicht geeichten Resonanzkreis bestimmt wurde. Fehler von ca. $\pm 2^{0}/_{0}$ sind dabei möglich.

	Tabelle III
Laufweg einer Welle (Hinweg + Rückweg) km	Mittlere Wellengeschwindigkeit m/#s
16,6 17,9 24,44 29,4 54,4 56,1 81,2 86,1 102,7 109,2 110,5 127,1 222	292,0 295,6 291 292,2 296,0 286 290,4 299 282 284,5 295 285 285 288,5

Die Aufzeichnung aller Werte über dem Laufweg ergibt keinerlei Anzeichen für eine Abhängigkeit der Wellengeschwindigkeit vom Laufweg. Vielmehr scheinen die Abweichungen nur in der Streuung begründet zu sein, die durch die beschränkte Genauigkeit der Zeitmessung nach der verwendeten Messmethode bedingt ist. Obige Mittelwerte ergeben $291 \pm 3^{0}/_{0} m/\mu s$ Wellen-Geschwindigkeit, gegenüber dem bekannten Wert von 300 m/ μs im Vakuum. Ein Unterschied der Wellengeschwindigkeit für Erd- und Kurzschlusswellen konnte nicht nachgewiesen werden, sofern stets der Beginn jeder Welle (jedes «Echos») zur Zeitmessung benutzt wird. Diese Beobachtungen erklären sich offenbar dadurch, dass wesentliche Wellenteile stets zwischen den Leitern wandern. Daher nähert sich die festgestellte Wellengeschwindigkeit trotz des sehr hohen Bodenwiderstandes doch dem Wert im Vakuum sehr stark.

Die Fehlerortsmessung mittels Wanderwellen bzw. mit dem KO scheint daher grundsätzlich durchführbar zu sein, wenn auch einige Schwierigkeiten im Lesen der Oszillogramme bestehen dürften, insbesondere, sofern die Leitung nicht homogen ist, oder wenn am Fehlerort ein Uebergangswiderstand von ca. 500 Ω besteht.

Für die überaus zuvorkommende Mithilfe bei den Gewittermessungen in den vier Sommern 1934...1937 und bei den ergänzenden Erdschlussund Kurzschlussversuchen sind wir der Betriebsleitung und dem Personal der Atel in Olten und Bodio und im Kraftwerk Piottino, wie auch dem Leitungspersonal der Gotthardleitung zu grösstem Dank verpflichtet. Auch allen denen, die uns durch Gewittermeldungen unterstützt haben, möchten wir bei dieser Gelegenheit herzlich danken. Ferner danken wir der Motor-Columbus AG., insbesondere deren Ingenieur Herrn G. Hunziker, für die tatkräftige Mithilfe bei den Fehlerortsversuchen. Die Auswertung der Wellengeschwindigkeiten wurde von einem Volontär, M. P. Mineur, besorgt, der diese grosse Arbeit mit Sorgfalt und Hingebung durchgeführt hat.